
Covering Points by a Disk

Group: Mohammad Ali, Curtis Gach, Arsal Mirza, Justin Ordonez
Advisor: Jingru Zhang

Outline
•Introduction

•Executive Summary
•Background
•Objectives

•Technique Approach
•The Two-Dimensional Version
•The Line-Constrained Version
•The One-Dimensional Version

•Deliverables
•Timeline
•Professional Awareness
•Conclusion

Executive Summary

• Goal of the project is to design three efficient
algorithms to calculate the best position for
placing a facility(e.g., sensor) to serve/
communicate with as many objects as possible.

• The algorithm will be implemented through the
use of a GUI written in the programming language
of our choice.

Problem Statement and Background
• Problem Statement:

• Input: Given n points (objects) in the plane and radius r (i.e., sensor covering range)
• Output: The center c (to place the sensor) of the cycle of radius r enclosing most

points
• Applications:

• Wireless Sensor Network
• Facility Location
• Urban Planning
• Clustering

Problem Statement and Background
• Problem Statement:

• Input: Given n points (objects) in the plane and radius r (i.e., sensor covering range)
• Output: The center c (to place the sensor) of the cycle of radius r enclosing most

points
• Applications:

• Wireless Sensor Network
• Facility Location
• Urban Planning
• Clustering

c

Objectives

• Design algorithms to find the coordinates of the center of the r-circle (i.e., the cycle
of radius r) enclosing most input points(objects) under three different scenarios:
• Two-dimension Version: Input points and the center could be anywhere in the

plane;
• Line-constrained Version: Input points are in the plane but the center is required

to be on a given line L;
• One-dimension Version: Input points and the center are on a given line L.

Technique Approach

Two-dimension Version

Computing the r-Cycle Enclosing Most Points

Input: n points

 Radius r > 0

Output: The center c of
the r-cycle enclosing most
points.

Computing the r-Cycle Enclosing Most Points

Input: n points

 Radius r > 0

Output: The center c of
the r-cycle enclosing most
points.

c

Computing the r-Cycle Enclosing Most Points

Observation: There is at least one input point on the optimal r-cycle.

Input: n points

 Radius r > 0

Output: The center c of
the r-cycle enclosing most
points.

c

Computing the r-Cycle Enclosing Most Points(Cont.)

Computing the r-Cycle Enclosing Most Points(Cont.)

Computing the r-Cycle Enclosing Most Points(Cont.)

Computing the r-Cycle Enclosing Most Points(Cont.)

Computing the r-Cycle Enclosing Most Points(Cont.)

Computing the r-Cycle Enclosing Most Points(Cont.)

Computing the r-Cycle Enclosing Most Points(Cont.)

Computing the r-Cycle Enclosing Most Points(Cont.)

Computing the r-Cycle Enclosing Most Points(Cont.)

Computing the r-Cycle Enclosing Most Points(Cont.)

Computing the r-Cycle Enclosing Most Points(Cont.)

Computing the r-Cycle Enclosing Most Points(Cont.)

The center c is on the boundary of the r-cycle of a point.

Computing the r-Cycle Enclosing Most Points(Cont.)

c

Computing the r-Cycle Enclosing Most Points(Cont.)

Algorithm:

For every input point p:
Compute the r-cycle enclosing most points
centered at a point on p’s r-cycle.

——— The Constrained Version

p

c

The Constrained Version

Input: constraint point s
 n points
 Radius r > 0
Output: The center c of the r-
cycle enclosing most points s.t
c is on the r-cycle of s.

s

The Constrained Version

Input: constraint point s
 n points
 Radius r > 0
Output: The center c of the r-
cycle enclosing most points s.t
c is on the r-cycle of s.

s
c

The Constrained Version (Cont.)

Observation:
For every input point p, its r-
cycle intersects s’ r-cycle at
an arc, and the r-cycle
centered at any point of the
arc encloses p and s.

s

p

The Constrained Version (Cont.)

Observation:
For every input point p, its r-
cycle intersects s’ r-cycle at
an arc, and the r-cycle
centered at any point of the
arc encloses p and s.

s

p

The Constrained Version (Cont.)

Observation:
For every input point p, its r-
cycle intersects s’ r-cycle at
an arc, and the r-cycle
centered at any point of the
arc encloses p and s.

s

p

The Constrained Version (Cont.)

Observation:
For every input point p, its r-
cycle intersects s’ r-cycle at
an arc, and the r-cycle
centered at any point of the
arc encloses p and s.

s

p

The Constrained Version (Cont.)

Lemma: The center c is any
point of the arc that is the
intersection of most arcs. s

The Constrained Version (Cont.)

Lemma: The center c is any
point of the arc that is the
intersection of most arcs. s

The Constrained Version (Cont.)

Lemma: The center c is any
point of the arc that is the
intersection of most arcs. s

Center c is the point piercing most arcs.

c

Arc Piercing Problem

s c

Input: n arcs on a cycle
Output: the point piercing
most arcs.

Center c is the point piercing most arcs.

Arc Piercing Problem

s c

Input: n arcs on a cycle
Output: the point piercing
most arcs.

Center c is the point piercing most arcs.

Arc Piercing Problem

s c

Input: n arcs on a cycle
Output: the point piercing
most arcs.

Center c is the point piercing most arcs.

Straightforward Way for Arc Piercing Problem

s

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Piercing 3 arcs: MaxCount = 3

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Piercing 2 arcs: MaxCount = 3

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Piercing 2 arcs: MaxCount = 3

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Piercing 2 arcs: MaxCount = 3

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Piercing 2 arcs: MaxCount = 3

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Piercing 2 arcs: MaxCount = 3

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Piercing 1 arcs: MaxCount = 3

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Piercing 2 arcs: MaxCount = 3

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Piercing 3 arcs: MaxCount = 3

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Piercing 1 arcs: MaxCount = 3

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Time Complexity: O(n2)

Compute how many arcs are
pierced by every endpoint.

Straightforward Way for Arc Piercing Problem

s

Time Complexity: O(n2)

Improve O(n2) to O(nlog n):
 Computing # of arcs pierced by

a point in O(1) time.

Compute how many arcs are
pierced by every endpoint.

The Preprocessing Work

s

The O(nlog n) Preprocessing Work:

1. Sort all endpoints of arcs in
clockwise order;

2. Mark Entry and Exit Endpoints
of every arc in clockwise order;

3. Set MaxCount = 0 and count = 1.

xΘ

The Preprocessing Work

s

The O(nlog n) Preprocessing Work:

1. Sort all endpoints of arcs in
clockwise order;

2. Mark Entry and Exit Endpoints
of every arc in clockwise order;

3. Set MaxCount = 0 and count = 1.

xΘ

Entry

The Preprocessing Work

s

The O(nlog n) Preprocessing Work:

1. Sort all endpoints of arcs in
clockwise order;

2. Mark Entry and Exit Endpoints
of every arc in clockwise order;

3. Set MaxCount = 0 and count = 1.

xΘ

Entry

Exit

O(n)-Time Ray Sweeping Algorithm

s

Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

O(n)-Time Ray Sweeping Algorithm

s

Piercing 3 arcs: MaxCount = 3Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Piercing 3 arcs: MaxCount = 3Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Piercing 2 arcs: MaxCount = 3Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Piercing 2 arcs: MaxCount = 3Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Piercing 2 arcs: MaxCount = 3Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Piercing 2 arcs: MaxCount = 3Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Piercing 2 arcs: MaxCount = 3Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Piercing 1 arcs: MaxCount = 3Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Piercing 1 arcs: MaxCount = 3Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Piercing 2 arcs: MaxCount = 3Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

O(n)-Time Ray Sweeping Algorithm

s

Time Complexity: O(n)

Ray Sweeping:
Use a ray to sweep endpoints in clockwise
oder to compute c

If it meets an Entry Point —— Event 1
 Compute # of arcs it pierces in O(1) time

If it meets an Exit Point —— Event 2
 Compute # of arcs it pierces in O(1) time

c

Event 1: The Sweeping Ray is Through an Entry Point

s

Event 1:

if the ray is through an Entry point

 count++

 update MaxCount and set c

 set the arc’s flag as true

Event 2: The Sweeping Ray is Through an Exit Point

s

Event 2:

if the current point is an exit point

 if the arc flag is false

 count + +

 update MaxCount and set c

 set the arc flag as false

 count - -

Arc Piercing Problem

s

After O(nlog n) preprocessing work, the
point piercing most arcs can be computed

in O(n) time.

c

Input: n arcs on a cycle
Output: the point piercing
most arcs.

Arc Piercing Problem

s

After O(nlog n) preprocessing work, the
point piercing most arcs can be computed

in O(n) time.

c

Input: n arcs on a cycle
Output: the point piercing
most arcs.

The Constrained Version

Input: constraint point s
 n points
 radius r > 0
Output: The center c of the cycle
of radius r enclosing most points
s.t c lying on the r-cycle of s.

s

Solved in O(n log n) time

The Constrained Version

Input: constraint point s
 n points
 radius r > 0
Output: The center c of the cycle
of radius r enclosing most points
s.t c lying on the r-cycle of s.

s

Solved in O(n log n) time

Computing the r-Cycle Enclosing Most Points

Ray Sweeping Algorithm ——— O(n2log n)

For every input point p:
Compute the r-cycle enclosing most
points centered at a point on its r-cycle.

The Line-Constrained Version

Computing Line-Constrained r-Cycle Enclosing Most Points

Input: n points

 Radius r > 0

 Line L

Output: The center c on L
of the r-cycle enclosing
most points.

Computing Line-Constrained r-Cycle Enclosing Most Points

Input: n points

 Radius r > 0

 Line L

Output: The center c on L
of the r-cycle enclosing
most points.

Computing the Line-Constrained r-Cycle Enclosing Most Points

Computing the Line-Constrained r-Cycle Enclosing Most Points

Computing the Line-Constrained r-Cycle Enclosing Most Points

Computing the Line-Constrained r-Cycle Enclosing Most Points

Computing the Line-Constrained r-Cycle Enclosing Most Points

Computing the Line-Constrained r-Cycle Enclosing Most Points

Computing the Line-Constrained r-Cycle Enclosing Most Points

Computing the Line-Constrained r-Cycle Enclosing Most Points

Computing the Line-Constrained r-Cycle Enclosing Most Points

Computing the Line-Constrained r-Cycle Enclosing Most Points

Computing the Line-Constrained r-Cycle Enclosing Most Points

Computing the Line-Constrained r-Cycle Enclosing Most Points

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

MaxCount = 1

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

MaxCount = 2

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

MaxCount = 2

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

MaxCount = 2

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

MaxCount = 2

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

MaxCount = 2

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

MaxCount = 2

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

MaxCount = 2

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

MaxCount = 3

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

MaxCount = 3

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

MaxCount = 3

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

MaxCount = 3

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

c

Interval Piercing Problem

Input: n intervals on x-axis
Output: The point piercing most intervals

—- This point is the center c

Our line sweeping algorithm computes c in O(n) time after O(nlog n) sorting.

Sweeping Line

MaxCount = 3

c

Computing the Line-Constrained r-Cycle Enclosing Most Points

Our Algorithm computes c in O(n) time with O(nlog n) preprocessing work.

The One-Dimension Version

Computing the One-Dimensional r-Cycle Enclosing Most Points

Input: n points on Line L

 Radius r > 0

Output: The center c on L
of the r-cycle enclosing
most points.

Our line sweeping algorithm computes c in O(n) time.

Computing the One-Dimensional r-Cycle Enclosing Most Points

Input: n points on Line L

 Radius r > 0

Output: The center c on L
of the r-cycle enclosing
most points.

Our line sweeping algorithm computes c in O(n) time.

Summary
• Two-dimension Version: Computing the center of the cycle of radius r to enclose

most points in the plane
——— O(n2log n) time

• Line-constrained Version: Computing the center of the cycle of radius r to enclose
most points in the plane with the constraint where the center must be on a given
line

——— O(n log n) time
• One-dimension Version: Computing the center of the cycle of radius r to enclose

most points on a given line
——— O(n) time

Conclusion
• Efficiently designed algorithms that compute the optimal location of the facility to

serve/communicate with most objects.
• We propose an O(n2log n)-time algorithm to solve the two-dimension Version:

Computing the center of the cycle of radius r to enclose most points in the plane.
• We propose an O(nlog n)-time algorithm to solve the line-constrained Version:

Computing the center of the cycle of radius r to enclose most points in the plane
with the constraint where the center must be on a given line.

• We propose an O(n)-time algorithm to solve the one-dimension Version: Computing
the center of the cycle of radius r to enclose most points on a given line.

• Our techniques can be applied to the high-dimension clustering.

C code for the Planar Version:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define MAX_INPUT_POINTS 12000
#define PI 3.141592654

// Define Input Point Structure
typedef struct
{
 double X;
 double Y;
 char flag; // Flag to determine if sweep has encountered enter point ("I") before exit point
("O")
} input_point;

// Define Intersection Point Structure
typedef struct
{
 int pointNum;
 input_point *point;
 double X;
 double Y;
 double angle;
 char dir;
 int total_intersections;
} intersection;

// "Merge Sort Program in C"
// By: Aman Goel
// Source: https://hackr.io/blog/merge-sort-in-c
void merge_sort(int i, int j, intersection a[], intersection aux[]) {
 if (j <= i) {
 return; // the subsection is empty or a single element
 }
 int mid = (i + j) / 2;

 // left sub-array is a[i .. mid]
 // right sub-array is a[mid + 1 .. j]

 merge_sort(i, mid, a, aux); // sort the left sub-array recursively
 merge_sort(mid + 1, j, a, aux); // sort the right sub-array recursively

 int pointer_left = i; // pointer_left points to the beginning of the left sub-array
 int pointer_right = mid + 1; // pointer_right points to the beginning of the right sub-array
 int k; // k is the loop counter

 // we loop from i to j to fill each element of the final merged array
 for (k = i; k <= j; k++) {
 if (pointer_left == mid + 1) { // left pointer has reached the limit
 aux[k] = a[pointer_right];
 pointer_right++;
 } else if (pointer_right == j + 1) { // right pointer has reached the limit
 aux[k] = a[pointer_left];
 pointer_left++;
 } else if (a[pointer_left].X < a[pointer_right].X) { // pointer left points to smaller
element
 aux[k] = a[pointer_left];
 pointer_left++;
 } else { // pointer right points to smaller element
 aux[k] = a[pointer_right];
 pointer_right++;
 }
 }

 for (k = i; k <= j; k++) { // copy the elements from aux[] to a[]
 a[k] = aux[k];
 }
}

/***
*
* C source code example
* Author: Tim Voght
* Date: 3/26/2005
* Web Address: http://paulbourke.net/geometry/circlesphere/
* Availability: http://paulbourke.net/geometry/circlesphere/tvoght.c
**
/
int circle_circle_intersection(double x0, double y0, double r0,
 double x1, double y1, double r1,
 double *xi, double *yi,
 double *xi_prime, double *yi_prime)
{
 double a, dx, dy, d, h, rx, ry;
 double x2, y2;

 /* dx and dy are the vertical and horizontal distances between
 * the circle centers.
 */
 dx = x1 - x0;
 dy = y1 - y0;

 /* Determine the straight-line distance between the centers. */
 //d = sqrt((dy*dy) + (dx*dx));
 d = hypot(dx,dy); // Suggested by Keith Briggs

 /* Check for solvability. */
 if (d > (r0 + r1))
 {
 /* no solution. circles do not intersect. */
 return 0;
 }
 if (d < fabs(r0 - r1))
 {
 /* no solution. one circle is contained in the other */
 return 0;
 }

 /* 'point 2' is the point where the line through the circle
 * intersection points crosses the line between the circle
 * centers.
 */

 /* Determine the distance from point 0 to point 2. */
 a = ((r0*r0) - (r1*r1) + (d*d)) / (2.0 * d) ;

 /* Determine the coordinates of point 2. */
 x2 = x0 + (dx * a/d);
 y2 = y0 + (dy * a/d);

 /* Determine the distance from point 2 to either of the
 * intersection points.
 */
 h = sqrt((r0*r0) - (a*a));

 /* Now determine the offsets of the intersection points from
 * point 2.
 */
 rx = -dy * (h/d);

 ry = dx * (h/d);

 /* Determine the absolute intersection points. */
 *xi = x2 + rx;
 *xi_prime = x2 - rx;
 *yi = y2 + ry;
 *yi_prime = y2 - ry;

 return 1;
}

int main() {
 // TEST: PRINT INPUT SIZE
 printf("Input Size: %d\n", MAX_INPUT_POINTS);

 // Initialize Timer Variables
 clock_t start_t, end_t;
 double total_t;

 // Radius r
 double r = 2;

 // Use current time as seed for random generator
 srand(time(0));

 // Generate random input points
 input_point Point[MAX_INPUT_POINTS];
 for (int i = 0; i < MAX_INPUT_POINTS; i++)
 {
 Point[i].X = (rand() % 10);
 Point[i].Y = (rand() % 10);

 // TEST: PRINT INPUT POINTS
 // printf("Point %d: (%f, %f)\n", i, Point[i].X, Point[i].Y);
 }

 // Start timer
 start_t = clock();

 // Initialize counter values to track current and max overlap
 int total = 1;
 int max = 0;

 // Initialize max pointer to track max intersection

 intersection *max_point;

 // Initialize array for max points of each loop
 intersection MaxPoints[MAX_INPUT_POINTS];
 int maxIndex = 0;

 for (int i = 0; i < (MAX_INPUT_POINTS-1); i++)
 {
 // Generate intersection points
 intersection Intersection[MAX_INPUT_POINTS * 2];
 int index = 0;

 // Reset total value
 total = 1;

 // Compare input point to each other input point
 for (int j = i+1; j < MAX_INPUT_POINTS; j++)
 {
 // Point 1: (x-h)^2 + (y-k)^2 = r^2 (Input point 1)
 double h = Point[i].X;
 double k = Point[i].Y;
 // Point 2: (x-o)^2 + (y-q)^2 = r^2 (Input point 2)
 double o = Point[j].X;
 double q = Point[j].Y;

 // Calculate distance between two input points
 double d = fabs(sqrt(pow((h-o), 2) + pow((k-q), 2)));

 // If distance between points is greater than 2r, print "no intersection" and continue loop
rest of points
 if(d > (2*r)) {
 // printf("No Intersection\n");
 continue;
 // If two points are the exact same, print "infinite solutions" and continue loop rest of
points
 } else if ((h == o) && (k == q)) {
 // printf("Infinite Solutions\n");
 continue;
 }

 // Initialize intersection coordinates
 double x1, x2 = 0;
 double y1, y2 = 0;

 // Calculate Intersection Coordinates
 circle_circle_intersection(h, k, r, o, q, r, &x1, &y1, &x2, &y2);

 // Initialize intersection angles
 double ang1, ang2 = 0;
 double temp1, temp2 = 0;

 // Calculate intersection angles
 // Calculate angle 1
 if (x1 == h)
 {
 if (y1 < k)
 ang1 = 90;
 else
 ang1 = 270;
 } else {
 temp1 = (atan2((y1 - k), (x1 - h)) * (180/PI));
 if(temp1 > 0) {
 ang1 = 360 - temp1;
 } else {
 ang1 = abs(temp1);
 }
 }
 // Calculate angle 2
 if (x2 == h)
 {
 if (y2 < k)
 ang2 = 90;
 else
 ang2 = 270;
 } else {
 temp2 = (atan2((y2 - k), (x2 - h)) * (180/PI));
 if(temp2 > 0) {
 ang2 = 360 - temp2;
 } else {
 ang2 = abs(temp2);
 }
 }

 // Calculate distance between point 1 right bound (angle 0) and point 2 center (o, q)
 double zero = fabs(sqrt(pow(((h+r)-o), 2) + pow((k-q), 2)));

 // Store intersection values in array
 // Define intersection 1

 Intersection[index].point = &Point[j];
 Intersection[index].pointNum = j;
 Intersection[index].X = x1;
 Intersection[index].Y = y1;
 Intersection[index].angle = ang1;
 // Check if angle 0 is within circle of compared point to determine "In" or "Out" Type
 if (zero < r || ((zero == r) && (q > k))) {
 if (ang1 < ang2) {
 Intersection[index].dir = 'O'; // Using 'I' for "In"/"Entering" point
 } else if (ang1 > ang2) {
 Intersection[index].dir = 'I'; // Using 'O' for "Out"/"Exiting" point
 } else {
 Intersection[index].dir = 'I'; // If ang1 = ang2, make intersection 1 "I" and
intersection 2 "O"
 }
 } else {
 if (ang1 < ang2) {
 Intersection[index].dir = 'I'; // Using 'I' for "In"/"Entering" point
 } else if (ang1 > ang2) {
 Intersection[index].dir = 'O'; // Using 'O' for "Out"/"Exiting" point
 } else {
 Intersection[index].dir = 'I'; // If ang1 = ang2, make intersection 1 "I" and
intersection 2 "O"
 }
 }
 // Set Input Point flag to 'F' by default (Indicates the point has not been scanned yet)
 Intersection[index].point->flag = 'F';
 index++;

 // Define intersection 2
 Intersection[index].point = &Point[j];
 Intersection[index].pointNum = j;
 Intersection[index].X = x2;
 Intersection[index].Y = y2;
 Intersection[index].angle = ang2;
 // Check if angle 0 is within circle of compared point to determine "In" or "Out" Type
 if (zero < r || ((zero == r) && (q > k))) {
 if (ang2 < ang1) {
 Intersection[index].dir = 'O'; // Using 'I' for "In"/"Entering" point
 } else if (ang2 > ang1) {
 Intersection[index].dir = 'I'; // Using 'O' for "Out"/"Exiting" point
 } else {
 Intersection[index].dir = 'O'; // If ang1 = ang2, make intersection 1 "I" and
intersection 2 "O"

 }
 } else {
 if (ang2 < ang1) {
 Intersection[index].dir = 'I'; // Using 'I' for "In"/"Entering" point
 } else if (ang2 > ang1) {
 Intersection[index].dir = 'O'; // Using 'O' for "Out"/"Exiting" point
 } else {
 Intersection[index].dir = 'O'; // If ang1 = ang2, make intersection 1 "I" and
intersection 2 "O"
 }
 }
 // Set Input Point flag to 'F' by default (Indicates the point has not been scanned yet)
 Intersection[index].point->flag = 'F';
 index++;

 // Increment total variable to account for points within a circle that overlaps angle '0'
 if (zero < r) {
 total++;
 }

 }

 // Check if there are no intersections; if so, continue loop and check next circle
 if (index == 0) {
 // printf("No Intersections\n\n");
 continue;
 }

 // Sort input points based off 'X' values (Merge Sort)
 intersection aux[MAX_INPUT_POINTS];
 merge_sort(0, index-1, Intersection, aux);

 // Sweep intersection list
 for (int k=0; k<index; k++)
 {
 if (Intersection[k].dir == 'I')
 {
 total++;
 if (total >= max)
 {
 max = total;
 max_point = &Intersection[k];
 }
 Intersection[k].point->flag = 'T'; // Set flag to true ('T')

 Intersection[k].total_intersections = total;

 } else if (Intersection[k].dir == 'O') {
 if (Intersection[k].point->flag == 'F') {
 if (total >= max) {
 max = total;
 max_point = &Intersection[k];
 }
 } else {
 Intersection[k].point->flag = 'F'; // Set flag to false ('F')
 }
 Intersection[k].total_intersections = total;
 total--;
 }
 }

 /*
 // Print coordinates of optimal point
 printf("Optimal point at:\n");
 printf("Point %d.%c: (%f, %f) Intersections: %d\n\n", max_point->pointNum,
max_point->dir, max_point->X, max_point->Y, max_point->total_intersections);
 */

 // Store max intersection for this loop
 MaxPoints[maxIndex].pointNum = max_point->pointNum;
 MaxPoints[maxIndex].X = max_point->X;
 MaxPoints[maxIndex].Y = max_point->Y;
 MaxPoints[maxIndex].dir = max_point->dir;
 MaxPoints[maxIndex].total_intersections = max_point->total_intersections;
 maxIndex++;
 }

 // Scan max point of each loop to determine final overall max point
 for (int count = 0; count < maxIndex; count++) {
 if (max_point->total_intersections < MaxPoints[count].total_intersections) {
 max_point = &MaxPoints[count];
 }
 }

 // Print coordinates of optimal point
 printf("\nFinal Optimal point at:\n");
 printf("Point %d.%c: (%f, %f) Intersections: %d\n\n", max_point->pointNum, max_point->dir,
max_point->X, max_point->Y, max_point->total_intersections);

 // End timer
 end_t = clock();

 printf("\nInput Size: %d\n", MAX_INPUT_POINTS);

 // Calculate runtime
 total_t = ((double)(end_t - start_t) / CLOCKS_PER_SEC);
 printf("Runtime: %0.10f seconds\n", total_t);

}

C code for Line-Constrained Case:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define MAX_INPUT_POINTS 15000
/*
sources: https://iq.opengenus.org/qsort-in-
c/#:~:text=qsort%20in%20C%20is%20an,h%20header%20file%20in%20C.
*/
typedef struct
{
 int pointNum;
 int pointX;
 int pointY;
 double intersectX;
 double intersectY;
 char dir;
 int total_intersections;
}Intersection;

// "Merge Sort Program in C"
// By: Aman Goel
// Source: https://hackr.io/blog/merge-sort-in-c
void merge_sort(int i, int j, Intersection a[], Intersection aux[]) {
 if (j <= i) {
 return; // the subsection is empty or a single element
 }
 int mid = (i + j) / 2;

 // left sub-array is a[i .. mid]
 // right sub-array is a[mid + 1 .. j]

 merge_sort(i, mid, a, aux); // sort the left sub-array recursively
 merge_sort(mid + 1, j, a, aux); // sort the right sub-array recursively

 int pointer_left = i; // pointer_left points to the beginning of the left sub-array
 int pointer_right = mid + 1; // pointer_right points to the beginning of the right sub-array
 int k; // k is the loop counter

 // we loop from i to j to fill each element of the final merged array
 for (k = i; k <= j; k++) {
 if (pointer_left == mid + 1) { // left pointer has reached the limit

 aux[k] = a[pointer_right];
 pointer_right++;
 } else if (pointer_right == j + 1) { // right pointer has reached the limit
 aux[k] = a[pointer_left];
 pointer_left++;
 } else if (a[pointer_left].intersectX < a[pointer_right].intersectX) { // pointer left points
to smaller element
 aux[k] = a[pointer_left];
 pointer_left++;
 } else { // pointer right points to smaller element
 aux[k] = a[pointer_right];
 pointer_right++;
 }
 }

 for (k = i; k <= j; k++) { // copy the elements from aux[] to a[]
 a[k] = aux[k];
 }
}

int main() { //horizontal line only

 Intersection intersection[MAX_INPUT_POINTS * 2]; //create array of intersection struct
 int index = 0; //index of struct array

 // Initialize Timer Variables
 clock_t start_t, end_t;
 double total_t;

 // Seed random number generator
 srand(time(0));
 // Random input points
 int pointsX[MAX_INPUT_POINTS];
 int pointsY[MAX_INPUT_POINTS];
 for (int i = 0; i < MAX_INPUT_POINTS; i++)
 {
 pointsX[i] = (rand() % 10);
 pointsY[i] = (rand() % 10);
 }

 // line y = mx + b
 double b = 3;
 double m = 0.5;

 // Radius r
 double r = 2;

 // Start timer
 start_t = clock();

 for (int i = 0; i < MAX_INPUT_POINTS; i++)
 {
 //Center point of circle (x-h)^2 + (y-k)^2 = r^2
 double h = pointsX[i]; //x-value
 double k = pointsY[i]; //y-value

 printf("\npoint %d: (%f, %f)\n",i,h,k);

 // Calculate intersection points x = +/- sqrt(r^2-b^2+2bk-k^2) + h
 double x1 = ((h-m*b+m*k) + sqrt(-(m*m)*(h*h) + 2*m*k*h - 2*m*b*h + (m*m)*(r*r) +
2*b*k + (r*r) - (b*b) - (k*k))) / (1+(m*m));
 double x2 = ((h-m*b+m*k) - sqrt(-(m*m)*(h*h) + 2*m*k*h - 2*m*b*h + (m*m)*(r*r) +
2*b*k + (r*r) - (b*b) - (k*k))) / (1+(m*m));

 // Calculate intersection points y = mx+b
 double y1 = m * x1 + b;
 double y2 = m * x2 + b;

 //if x != real number it is not intersecting
 if (isnan(x1) || isnan(x2))
 {
 printf("no intersection\n");
 continue;
 }

 //if x1=x2 it is tangent
 //just make two entries of the same point
 //only difference is L & R
 if (x1 == x2)
 printf("Tangent intersection\n");

 printf("Left intersection point (%f,%f)\n", x2,y2);
 printf("Right intersection point (%f,%f)\n", x1,y1);

 //add left value to struct
 intersection[index].pointNum = i;

 intersection[index].pointX = h;
 intersection[index].pointY = k;
 intersection[index].intersectX = x2;
 intersection[index].intersectY = y2;
 intersection[index].dir = 'L';
 ++index;

 //add Right value to struct
 intersection[index].pointNum = i;
 intersection[index].pointX = h;
 intersection[index].pointY = k;
 intersection[index].intersectX = x1;
 intersection[index].intersectY = y1;
 intersection[index].dir = 'R';
 ++index;
 }

 // TEST: display point number and intersection x value
 /*
 printf("Before sorting\n");
 printf("point num | intersect x-value\n");
 for (int i=0; i< index; i++)
 printf("%d | %f\n", intersection[i].pointNum, intersection[i].intersectX);
 */

 // Sort input points based off 'X' values (Merge Sort)
 Intersection aux[MAX_INPUT_POINTS];
 merge_sort(0, index-1, intersection, aux);

 // TEST: prove it sorted based off the x-intersections
 /*
 printf("After sorting\n");
 for (int i=0; i< index; i++)
 printf("%d | %f\n", intersection[i].pointNum, intersection[i].intersectX);

 //end result
 for (int i=0; i< index; i++)
 printf("| %d.%c ", intersection[i].pointNum, intersection[i].dir);
 printf("|\n");
 */

 //idk
 int total = 0;
 int max = 0;

 //sweep left to right to determine optimal point/s
 for (int i=0; i<index; i++)
 {
 if (intersection[i].dir == 'L')
 {
 total++;
 if (total >= max)
 {
 max = total;
 intersection[i].total_intersections = max;
 }
 }
 if (intersection[i].dir == 'R')
 {
 total--;
 }
 }

 printf("Optimal point/s at: ");
 for (int i=0; i<index; i++)
 {
 if (intersection[i].total_intersections == max)
 //printf("%d ", intersection[i].pointNum);
 printf("(%f, %f) ", intersection[i].intersectX, intersection[i].intersectY);
 }

 // End timer
 end_t = clock();

 printf("\nInput Size: %d\n", MAX_INPUT_POINTS);

 // Calculate runtime
 total_t = ((double)(end_t - start_t) / CLOCKS_PER_SEC);
 printf("Runtime: %0.10f seconds\n", total_t);

}

C code for One-Dimensional Case:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#define MAX_INPUT_POINTS 15000

// Define Intersection Point Structure
typedef struct
{
 int pointNum;
 double X;
 double Y;
 char dir;
 int total_intersections;
} intersection;

// Define Input Point Structure
typedef struct
{
 int pointNum;
 double X;
 double Y;
 intersection *Left;
 intersection *Right;
} input_point;

// "Merge Sort Program in C"
// By: Aman Goel
// Source: https://hackr.io/blog/merge-sort-in-c
void merge_sort(int i, int j, input_point a[], input_point aux[]) {
 if (j <= i) {
 return; // the subsection is empty or a single element
 }
 int mid = (i + j) / 2;

 // left sub-array is a[i .. mid]
 // right sub-array is a[mid + 1 .. j]

 merge_sort(i, mid, a, aux); // sort the left sub-array recursively
 merge_sort(mid + 1, j, a, aux); // sort the right sub-array recursively

 int pointer_left = i; // pointer_left points to the beginning of the left sub-array

 int pointer_right = mid + 1; // pointer_right points to the beginning of the right sub-array
 int k; // k is the loop counter

 // we loop from i to j to fill each element of the final merged array
 for (k = i; k <= j; k++) {
 if (pointer_left == mid + 1) { // left pointer has reached the limit
 aux[k] = a[pointer_right];
 pointer_right++;
 } else if (pointer_right == j + 1) { // right pointer has reached the limit
 aux[k] = a[pointer_left];
 pointer_left++;
 } else if (a[pointer_left].X < a[pointer_right].X) { // pointer left points to smaller
element
 aux[k] = a[pointer_left];
 pointer_left++;
 } else { // pointer right points to smaller element
 aux[k] = a[pointer_right];
 pointer_right++;
 }
 }

 for (k = i; k <= j; k++) { // copy the elements from aux[] to a[]
 a[k] = aux[k];
 }
}

// Driver code
int main()
{
 // Use current time as seed for random generator
 // srand(time(0));

 // Initialize Timer
 clock_t start_t, end_t;
 double total_t;

 /*
 // Define User Input Values for Radius and Line
 double r = (rand() % 10) + 1;
 double m = (rand() % 10);
 double b = (rand() % 10);

 // TEST: PRINT LINE PARAMETERS
 printf("Line: y = %fx + %f \n", m, b);

 printf("Radius: %f \n", r);
 */

 // TEMPORARY: FOR TESTING
 double r = 2;
 double m = 1;
 double b = 1;

 // Generate random input points
 input_point Point[MAX_INPUT_POINTS];
 for (int i = 0; i < MAX_INPUT_POINTS; i++)
 {
 Point[i].X = (rand() % 10);
 Point[i].Y = (m * Point[i].X) + b;
 Point[i].pointNum = i;

 // TEST: PRINT INPUT POINTS
 // printf("Point %d: (%f, %f) \n", i, Point[i].X, Point[i].Y);
 }

 // Generate intersection points
 intersection Intersection[MAX_INPUT_POINTS * 2];
 int intersect = 0;
 for (int i = 0; i < MAX_INPUT_POINTS; i++)
 {
 // Define Left Bound Point
 Intersection[intersect].pointNum = i;
 Intersection[intersect].X = Point[i].X - (r * cos(atan(m)));
 Intersection[intersect].Y = (m * Intersection[intersect].X) + b;
 Intersection[intersect].dir = 'L';
 Point[i].Left = &Intersection[intersect];

 // TEST: PRINT LEFT-BOUND INTERSECTION
 // printf("Point %d Left-Bound: (%f, %f)\n", i, Intersection[intersect].X,
Intersection[intersect].Y);
 intersect++;

 // Define Right Bound Point
 Intersection[intersect].pointNum = i;
 Intersection[intersect].X = Point[i].X + (r * cos(atan(m)));
 Intersection[intersect].Y = (m * Intersection[intersect].X) + b;
 Intersection[intersect].dir = 'R';

 Point[i].Right = &Intersection[intersect];

 // TEST: PRINT RIGHT-BOUND INTERSECTION
 // printf("Point %d Right-Bound: (%f, %f)\n", i, Intersection[intersect].X,
Intersection[intersect].Y);
 intersect++;
 }

 // Sort input points based off 'X' values (Merge Sort)
 input_point aux[MAX_INPUT_POINTS];
 merge_sort(0, MAX_INPUT_POINTS-1, Point, aux);

 // TEST: SORTED INPUT POINTS
 /*
 printf("\n\nInput Points After Sorting:\n");
 for (int i=0; i < MAX_INPUT_POINTS; i++) {
 printf("Point %d: (%f, %f)\n", Point[i].pointNum, Point[i].X, Point[i].Y);
 }
 */

 // Start timer
 start_t = clock();

 int total = 0;
 intersection *maxPoint = Point[0].Right;
 maxPoint->total_intersections = 0;
 for(int i=0, j=1; (j<MAX_INPUT_POINTS);) {
 // TEST: VIEW COMPARED POINTS AND VALUES
 printf("%d vs %d | Compare: Point %d.R (%f) vs Point %d.L (%f) | ", i, j, Point[i].pointNum,
Point[i].Right->X, Point[j].pointNum, Point[j].Left->X);
 if (Point[i].Right->X >= Point[j].Left->X) {
 j++;
 } else {
 i++;
 }
 total = j - i;
 Point[i].Right->total_intersections = total;
 // TEST: CHECK OVERLAP VALUES
 printf("Overlap: %d\n", total);
 if (maxPoint->total_intersections <= Point[i].Right->total_intersections) {
 maxPoint = Point[i].Right;
 // TEST: UPDATE MAX POINT
 // printf(" Max Point: Point %d | Overlap %d\n", maxPoint->pointNum,
maxPoint->total_intersections);

 }
 }

 printf("\nOptimal Point: Point %d.R (%f, %f) | Overlap %d\n", maxPoint->pointNum,
maxPoint->X, maxPoint->Y, maxPoint->total_intersections);

 // End timer
 end_t = clock();

 printf("\nInput Size: %d\n", MAX_INPUT_POINTS);

 // Calculate runtime
 total_t = ((double)(end_t - start_t) / CLOCKS_PER_SEC);
 printf("Runtime: %0.15f seconds\n", total_t);
}

